функциональный ряд вида
, (1)
то есть ряд, расположенный по синусам и косинусам кратных дуг. Часто Т. р. записываются в комплексной форме
.
Числа an, bn или cn называют коэффициентами Т. р.
Т. р. играют весьма важную роль в математике и её приложениях. Прежде всего Т. р. дают средства для изображения и изучения функций и являются поэтому одним из основных аппаратов теории функций. Далее, Т. р., естественно, появляются при решении ряда задач математической физики, среди которых можно отметить задачу о колебании струны, задачу о распространении тепла и др. Наконец, теория Т. р. способствовала уточнению основных понятий математического анализа (функция, интеграл), вызвала к жизни ряд важных разделов математики (теория интегралов Фурье, теория почти-периодических функций), послужила одним из отправных пунктов для развития теории множеств, теории функций действительного переменного и функционального анализа и положила начало общему гармоническому анализу.
Т. р. впервые появляются в работах Л.
Эйлера ("Введение в анализ бесконечно малых", 1748; Письмо к Х.
Гольдбаху от 4 июля 1744), например:
,
Эйлер указал на связь между степенными рядами и Т. р.: если
, где
cn действительны, то
(где Re обозначает действительную часть функции). Эйлеру же принадлежат первые приложения Т. р. к исследованию колебания струны (1748); по его мнению, в Т. р. могут быть разложены лишь те функции, которые мы теперь назвали бы кусочно-аналитическими. Формулы для коэффициентов в разложении
,
а именно:
,
были впервые указаны А.
Клеро (1757), а их вывод посредством почленного интегрирования Т. р. был дан Эйлером в 1777; впрочем, формулы для
a0 и
a1 встречаются еще раньше у Ж.
Д'Аламбера (1754).
Т. р. привлекли к себе интерес крупнейших математиков 50-70-х гг. 18 в. в связи со спором о колебании струны. В частности, Д.
Бернулли впервые высказал утверждение, что "произвольная" функция может быть разложена в Т.. р. Однако в то время понятие функции было ещё недостаточно отчётливым (см.
Функция). Утверждение, что функции весьма общего вида действительно могут быть разложены в Т. р., было вновь высказано и постоянно выдвигалось Ж.
Фурье (1811); он систематически пользовался Т. р. при изучении задач теплопроводности. Весьма широкий класс Т. р. по праву носит его имя (см.
Фурье ряд). После исследований Фурье Т. р. прочно вошли в математическую физику (С.
Пуассон, М. В.
Остроградский). Существенный прогресс теории Т. р. в 19 в. был связан с уточнением основных понятий математического анализа и созданием теории функций действительного переменного. Так, П.
Дирихле (1837), уточнив понятие произвольной функции, получил первый общий признак сходимости рядов Фурье; Г. Ф. Б.
Риман исследовал понятие
Интеграла и установил необходимое и достаточное условие интегрируемости функций в связи с исследованиями по Т. р.; исследования, относящиеся к изображению функций Т. р., привели Г.
Кантора к созданию теории множеств; наконец, А.
Лебег (1902-06), применив развитые им понятия меры и интеграла к теории Т. р., придал ей современный вид. Важный вклад в теорию Т. р. внесли Н. Н.
Лузин, Д. Е.
Меньшов и др.
Лит.: Лузин Н. Н., Интеграл и тригонометрический ряд, М. - Л., 1951; Барин. К., Тригонометрические ряды, М., 1961; Зигмунд А., Тригонометрические ряды, пер. с англ., 2 изд., т. 1-2, М., 1965.